On the development of a hyperspectral library for autonomous mining systems
نویسندگان
چکیده
The use of hyperspectral imagery for robotics is predicted to increase as costs of sensors decline. A library of spectra can be used to map hyperspectral data to identify objects by comparing their reflectance signature to known materials. In this paper, methods used to build the spectral library to map geology on mine faces are described. The library includes various (simulated) environmental conditions such as different light sources and the inclusion of shade and moisture. The principal focus of this paper is the inclusion of shade and moisture into the spectral library and to investigate their effects on curve shape and albedo. These effects are usually not considered in other spectral libraries. The signal-to-noise ratios (SNRs) are greatest for spectra acquired under artificial light and become progressively smaller for spectra acquired under natural light, moisture and shade. Shade decreases the brightness but does not generally alter the shape of the spectral curve. Moisture decreases albedo but less than shade does, however, moisture changes the shape of the spectral curve. Principal component analysis suggests that several major rock types could be distinguished on the basis of their spectral reflectance. This study demonstrates the importance of collecting library spectra under a range of conditions in order to achieve an accurate mapping of covertypes.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملHigh performance of the support vector machine in classifying hyperspectral data using a limited dataset
To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...
متن کاملA state-of-the-art review of mechanical rock excavation technologies
The first step in mining activities is rock excavation in both mine development and production. Constant pressure for cost reduction and creating an improved/safe work environment for personnel has naturally resulted in increased use of mechanical excavation systems in many mining operations. Also, mechanical excavation and mining is more compatible with automation, meaning possibility of reduc...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009